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Abstract.  This paper introduces two benchmark problem sets based on actual space 
mission operations.  Each benchmark problem set includes problem generators, 
declarative specification of the problem(s), and one or more simulations.  The first 
mission is the DATA-CHASER shuttle payload that flew onboard space shuttle 
Discovery flight STS-85 in 1997, and demonstrated the ability of automated mission 
planning to both reduce commanding effort and improve science return.  The second 
mission is the Citizen Explorer Mission (CX-1), which is a small, earth orbiting 
satellite currently being prepared for launch.  We include three problem classes of 
increasing complexity (and realism) for each mission scenario: planning and scheduling 
with states and resources (PSSR), PSSR with functional dependencies, and PSSR with 
functional dependencies and plan quality.  The actual implementations are available 
for download from web sites at the University of Colorado, which designed and 
operated these spacecraft and missions. 
 
 

1 Introduction 
Historically, the research and applications communities in the area of automated 
planning and scheduling have not had significant amounts of interaction.  As a 
consequence, there has not been significant transfer of information between the 
communities in either direction.  Specifically, the cross-fertilization of communities is 
limited to a small number of research systems deployed in an ongoing operational 
context, and similarly only a few real-world planning and scheduling problems have 
breached the research community.   

There are many reasons for this situation.  It takes an incredible investment of time 
and energy for a researcher to learn the intricacies of an application domain.  The 
research community and research institutions generally have not rewarded this 
investment of effort.  Likewise, the community solving actual planning and scheduling 
problems did not have adequate incentive to work with the research community.  With 
many difficult problems to solve in building functional systems, many of the central 
research areas are of lower priority.  And in the commercial arena, there is significant 
negative incentive to distribute lessons painfully learned, which represent a n important 
competitive advantage after all. 

Fortunately, this situation appears to be changing.  Within the research community, 
there is an increasing understanding of the importance of being relevant to the real 
world.  With the appearance of startup companies and venture capital, the financial 
incentive to develop mature algorithms has grown considerably.  Furthermore, with the 



 

maturation of the field (and technology), the incentive for applied organizations to 
engage the research community has become more urgent. 

This paper represents an effort to leverage the research community in developing 
techniques for integrated planning and scheduling problems that occur commonly for 
space mission operations.  The remainder of this paper is  organized as follows.  First, 
we describe the basic elements that we provide for each testbed domain: a domain 
description, a declarative model, problem generators, and a simulation.  For each such 
domain, we provide three versions of increasing complexity.  A basic version of each 
domain includes planning and scheduling with resources.  A more complex version 
adds functional dependencies.  And the most complex version includes both functional 
dependencies and plan quality.  Next, we describe each of the domains described in 
this paper: DATA -CHASER shuttle payload operations and Citizen Explorer (CX-1) 
satellite mission operations.  For each domain we describe the background for the 
mission and mission goals.  We then provide more details about the planning and 
scheduling problems.  Next we describe the provided problem generators and 
simulators.  Finally, we compare the problem domains presented with previously 
published domains in both the planning and scheduling and the operations research 
communities. 

2 The Elements of a Testbed Domain 
The first element of each domain is a textual description.  This description gives the 
context of the model, problem generators, and simulation.  It explains the mission being 
modeled and the overall problem context.  It also references previous work in 
automated planning and scheduling solutions to the problem.   

The second element of each domain is a model.  This model is provided in the 
ASPEN Modeling Language (AML) [Sherwood et al. 1998].  AML is a mature 
representation language that has been used to represent planetary rover operations 
constraints [Sherwood et al. 2000] as well as space mission operations constraints for 
actual deployments [Smith et al. 2001, Wilkins&desJardins 2001].  While ideally these 
domain models could  be provided in a more generic language, this format was chosen 
for two reasons.  First, using AML facilitates timely release of the domain models by 
minimizing release effort.  Given that it is desirable to release as many domain models in 
a timely fashion, it is hoped that others in the community will translate these models 
into a generic format.  Second, certain aspects of the domain model would be difficult 
to represent in current generic domain description languages.  The hope is that release 
of these models will spur extension of domain description languages.  A description of 
the modeling language used for the original models is available for download from 
http://aspen.jpl.nasa.gov. 

The third element of each problem domain is a problem generator.  This is an 
executable (in these cases, Perl scripts) that can be used to generate a large number of 
initial states and goals for a planner to solve.  In most cases the problem generator is 
parameterized to enable generating problems of varying size and diffic ulty. 

The final element of each problem domain is a simulator.  Once a planner has 
specified a plan, an execution simulation can be used to stochastically evaluate the 
effectiveness and the robustness of the plan for simulated missions operations.  
Effectiveness determines how well the planner satisfied the spacecraft goals, and can 
be measured by assessing the operational results, such as the science return, resource 
consumption, or state changes. Robustness, on the other hand, measures the ability of 
the planner to enable a successful mission in spite of significant run-time variations 
and anomalies, such as an action finishing early, consuming excessive resources, or 



 

simply not executing correctly.  Robustness can be measured by determining the 
number of inappropriate actions that are sent to the simulator, which in turn violate the 
constraints of the domain or put the spacecraft in an unsafe state.  

The simulator itself has three parts: The database which stores the current state at 
time t, a set of specifications and constraints, and an executive, which receives action 
commands from the planner, attempts to execute them using the specification and 
constraint set, and updates the current state.  The simulator is scalable so that there 
can be large or small simulations.  The modeling of the simulator depends on how the 
planning language is defined, which determines whether activities are time-stamped, 
connected by constraints, or have conditional activities, or whether the planner can 
update its plan based on simulation feedback during the simulation.  

For our domains, batch planners and continuous planners both use the same 
simulator.  The planner is required to submit activities some number of seconds in 
advance of their scheduled execution, which is described as the commit window.  The 
commit window must be greater than or equal to one second, and the planner must 
register the commit window length with the simulator when execution starts. The 
commit window size can change during execution, but the planner cannot modify 
activities once they have entered the commit window.  The planner can receive updates 
from the simulator regarding activity parameter changes (such as start time or 
duration), state and resource updates, and current time.  The simulator can warp so that 
the plans can run much faster than real time, relative to the commit window described 
by the particular planner. Batch planners can control the simulator either by setting the 
commit window to the duration of the plan (in which case the simulator can quickly 
warp through the entire simulation), or by passing parameterized activities at the 
appropriate times, but not replanning during the simulation.  An important point to 
note here is that the domain information does not pose any restrictions on the use of 
planning technology to solve the problems.  The planners could use constraint-based 
methods, committed search methods, or any other methods.  Indeed, there is no 
restriction that a planner must be used, a smart executive or even arbitrary C code 
could be used to command the simulator.  This opens the competition to truly test if 
planning technology is useful.  

The stochastic model, or run-time variations, are stored as part of the 
specifications, which specify distributions instead of single values for certain variable 
features.  Three different aspects of the mission can be impacted at run time: activity 
failure, resource consumption, and time and duration of state changes.  Each domain 
has a stochastic and a non-stochastic simulator included in the release. 

3 The DATA CHASER Mission 
The DATA-CHASER was a Hitchhiker payload that flew onboard the Space Shuttle 
Discovery flight STS-85 in August 1997.  (Figure 1)  It had 3 co-aligned instruments 
that take data in the far and extreme ultraviolet wavelengths: far and extreme ultra-violet 
spectrometer (FARUS), soft x-ray and extreme ultraviolet experiment (SXEE), and a 
Lyman-Alpha solar imaging telescope (LASIT).  In the actual DATA-CHASER mission, 
mission operations were automated using the DCAPS (DATA -CHASER Automated 
Planner and Scheduler) planning system [Chien et al. 1999].  The DATA -CHASER 

   
Fig. 1. DATA-CHASER payload integrated into the STS-85 Shuttle Bay, STS-85 launching, 
and Payload Operator Jason Willis using DCAPS to command DATA-CHASER. 



 

domain as modeled for the actual mission uses 67 resources and 58 activity types.  
Examples of resources include onboard power, a 4 MB memory buffer, and a 2 GB 
digital tape drive.  Most of the systems have at least one state variable, which 
represents whether or not they are activated.   Shuttle orientation is also modeled as a 
state variable.  There are many concurrency resource constraints, for instance a 
downlink or uplink can only occur during contact with a TDRSS satellite.  The activities 
include taking a picture with LASIT, changers for each state variable (such as 
opening/closing instrument doors), and descriptions of exogenous events like the 
shuttle passing to/from the Earth’s shadow.  Unfortunately, software integration 
difficulties before launch disabled part of the hardware during the mission.  Our 
problems are based on the mission as originally designed. 

DATA -CHASER problems involve trying to take observations within specified time 
windows given a number of exogenous events that change at different times.  For 
instance, one consequence of flying on the shuttle system is that shuttle resources are 
shared and, hence, limited, with availability subject to change every 12 hours (the 
frequency at which NASA changes shuttle flight plans).  These resources include 
access to uplink and downlink channels, and time that the payload is allowed to 
operate.  Moreover, scientis ts would like to perform dynamic rescheduling during the 
mission.  For instance, a solar flare can occur at random and drive a scientist’s desire to 
rapidly alter the DATA-CHASER’s activity schedule to reflect new requirements and 
goals, such as altered instrument priorities or longer integration times.  

DATA -CHASER requires data and power management while gathering science. An 
automated scheduler searches for an optimal “data taking” schedule, while adhering to 
the constraints and resource restrictions.  In its basic formulation, DATA -CHASER is a 
straightforward resource and state constrained scheduling problem that serves as a 
good introduction to the types of operations constraints common in spacecraft 
operations.  A more complicated formulation requires representation of a number of 
functional dependencies including thermal and power constraints.  In the full-blown 
formulation, DATA-CHASER represents a complex scheduling problem involving 
deadlines, observation windows, science preferences, linked observations, and 
engineering optimization criteria such as minimizing tape starts and stops as well as 
instrument door operations.  There is no substantive planning (e.g. subgoaling) in the 
DATA-CHASER domain. 

 
3.1 The DATA-CHASER Models and Problem Generators 
The simplest DATA-CHASER model has over 46 activity types that are defined in 
terms of their effects on 19 resources and 9 states, which collectively represent the 
DATA-CHASER’s external environment and subsystems.   Such resources and states 
include the memory buffer, available power, communications availability periods, 
subsystem modes, and shuttle orientation.  Most activities are possible commands to 
payload subsystems like performing an observation, moving data to a DAT recorder, or 
downlinking data.  A smaller set of activities is for representing uncontrollable 
exogenous events like a shuttle orientation shift or entering a communications 
availability period.  The five types of exogenous events to schedule around include: 
• Shuttle orientation:  The shuttle can point its cargo bay in one of four directions: 

Earth, Sun, Moon, and Deep Space.  Given that the DATA -CHASER is a low 
priority Hitchhiker payload, it has no control over the orientation. 

• Shuttle contamination:  Occasionally the shuttle needs to fire its maneuvering 
rockets for orbit maintenance.  In addition to accelerating the shuttle, this activity 



 

contaminates local space for a short time.  The DATA-CHASER has to close its 
main canister door during this time to keep its optics clean. 

• Low data rate communications windows : During most of the mission the shuttle can 
provide a 1200 byte/sec downlink through the TDRSS satellite network, but a one to 
ten minute window exists in each orbit when no TDRSS satellite is in view. 

• Medium data rate communications windows : Occasionally the mission will have a 
25000 byte/sec downlink to a ground station, but availability depends on ground 
station visibility and the needs of other more important missions. 

• Eclipse events: Once every orbit the shuttle travels through the Earth’s shadow, 
and no solar observations are possible. 

DCAPS-RES  is our simplest DATA-CHASER planning model and illustrates 
planning with resources.  The objective is to perform observations when the shuttle is 
not in the Earth’s shadow, the cargo bay is facing the sun, and the shuttle has not 
recently contaminated the space around it.  FARUS, SXEE and LASIT respectively take 
72, 181, and 52 seconds and generate 5120 bytes, 48 bytes, and 2 megabytes per 
observation, and whole system generates a kilobyte of engineering telemetry per hour.  
Given that the memory buffer only has 4 MB, it is the most constrained resource.  Since 
data can be rapidly transferred to the 2GB DAT recorder, there are naïve approaches to 
scheduling the observations by simply transferring the data as soon as it collected, but 
data on the DAT cannot be downlinked for rapid analysis during the mission.  Rapid 
analysis is desired to let scientists alter the priorities of different observations to 
improve data quality.  Thus some goals have explicit downlink requirements, making 
the scheduling problem slightly more difficult. 

While our first model had fairly simple actions that took constant amounts of time 
and had static effects, our second model (called DCAPS-PARM) is slightly more 
complex in that it uses parameter dependency functions capture the context dependent 
thermal management problem.  Since DATA-CHASER was mounted on a poorly 
conducting trellis in the vacuum of space, the only way to dissipate heat was through 
radiation.  This means that the payload warmed when the sun beat down on it, and 
cooled during eclipses and when it pointed at deep space.  We model this in terms of 
the temperature of the payload changing at rates determined by the shuttle’s 
orientation, whether or not the canister door is open, and the power requirements of 
current activities.  Given our model of heat, a schedule has a conflict due to calibration 
loss whenever the temperature falls outside of an 18° to 22° Celsius range.   

Given DCAPS-PARM, we define DCAPS-OPT as an even harder third model to 
optimize science collection during a 12 hour period where different observations have 
context dependent payoffs depending on varying solar activity – an exogenous event. 

The problem generators create random start states with subsequent 12-hour 
exogenous event scenarios and either a requested collection of observations or an 
observation payoff metric for the DCAPS-OPT model.  We describe the exogenous 
events either in terms of cycles that start at a random point or markov models where 
time to take a transition is uniformly distributed between an upper and lower bound.  
For instance, the shuttle will be at some random point in its orbit and the day/night 
transition is a cycle starting at that point.  Shuttle orientation provides an example of a 
markov model where scheduling to satisfy other payload needs results in changing the 
shuttle’s orientation in random ways.  In order to inject some realism into our markov-
model-based exogenous events, we built our markov models from the 12-hour shuttle 
event sequences used during actual DATA -CHASER operations. 



 

3.2 The DATA-CHASER Simulator  
We evaluate solution plans for a problem by simulating them.  The simulator takes 
exogenous events and grounded activities and determines what happens to the 
payload.  For instance, having the contamination event with the CHASER door open 
may result in the instruments failing due to dirty optics.  To evaluate solutions in each 
of the three models, the simulator has a flag to control the temperature component.  For 
the simplest model, the simulator holds the temperature constant, and for the other 
models the simulator lets the temperature vary. 

To make the problem more realistic, the simulator has a second flag to control a 
stochastic element.  While actions in planning domains have explicit durations and 
effects, actions in reality have results that vary stochastically.  For instance, a model 
might pessimistically state that it takes two minutes to transfer a LASIT image to the 
DAT recorder, but the actual time might vary from 100 to 120 seconds.  In addition to 
time four other effects can vary around nominal operations: 
• Datatakes : Datatakes will fail randomly 9% of the time.  Actual power usage will 

differ from predicted power usage based on a normal distribution with a small 
variance.  Failure rates and variances increase as the instruments’ temperature 
approach the 18° and 22° Celsius bounds due to calibration problems. 

• DAT Transfers : Transferring data to the DAT fails 2% of the time with data loss. 
• Communications: Communications windows can drift slightly due to small variances 

between the Shuttle’s orbit and the TDRSS satellite network. 
• Thermal: The payload’s rate of temperature change can vary by up to 5%. 

Once given a problem description, the simulator takes grounded activities some set 
time in advance of executing them and giving sensory feedback in the form of failure 
notifications and the actual changes to the payload, which can stochastically different 
from the modeled expectations.  This approach facilitates being able to test both batch 
planning approaches as well as incremental approaches.  Upon completing the plan the 
simulator returns the plan’s resulting score based on multiple criteria: 
• The number of violated operational conflicts 
• The number of successfully downlinked observations by observation type 
• The number of observations stored on the DAT by observation type 
• The number of times that the CHASER door opens and closes 
• The number of activity failures by activity 
• The total amount of power used while performing the observations 
• An observation time based utility function for DCAPS-OPT problems. 

4 The Citizen Explorer 1 (CX-1) Mission 
The CX-1 spacecraft is a student designed and built spacecraft (Figure 2), developed 
by the Colorado Space Grant Consortium [Willis et.al. 1999].  The CX-1 satellite has a 
gravity gradient boom to keep it pointed to the Earth and uses two instruments to make 
atmospheric observations: a photometer to measure visible light intensity near the 
365nm wavelength and a spectrophotometer to measure light intensities at different 
wavelengths between 280 and 350nm.  These instruments will be used to perform 
atmospheric and climatological science coordinated with ground-based ozone and 
aerosol measurement.  CX-1 was originally scheduled to launch on No vember 17, 2000.  
However, due to software and hardware difficulties with the communications 
subsystem, this launch has been delayed.  Future launch possibilities are currently 
being negotiated.  When launched, CX-1 will be in a sun-synchronous orbit around the 



 

Earth at an altitude of 705 kilometers.  The main ground tracking station will be in 
Colorado, and will downlink stored satellite data, provide real time health and status 
data, and uplink commands and control directives.  CX-1 will also broadcast science 
and engineering data at UHF frequencies to schools at locations in the US. 

CX-1 mission planning scenarios focus on the problem of acquiring the appropriate 
atmospheric measurements, downlinking the data to the correct schools during the 
upcoming pass, uplinking real-time activity requests from the University of Colorado, 
and monitoring spacecraft health and orbit patterns.  Multiple constraints make this 
problem difficult.  First, small data buffer sizes make CX-1 planning a highly resource 
constrained scheduling problem.  Second, the time windows when CX-1 can downlink 
to a ground station are extremely limited by the limited onboard power and the small 
size of K-12 school ground stations (due to cost constraints),.  Third, a large amount of 
data will be requested from the spacecraft  so that it is important to optimize use of 
available downlink.  Fourth, measurements made by CX-1 are categorized and driven by 
sun levels , hence the operations will vary based on near real-time feedback.  While CX-
1 operations does involve a small amount of planning (subgoaling), it is primarily a 
scheduling problem.   

 
4.1 The CX-1 Models and Problem Generators 
The model for CX-1 has approximately thirty-two activities, including data-takes, data 
downlinks, data uplinks, and engineering activities.  These activities are defined in 
terms of their effects on thirteen resources and eight states, which collectively 
represent the CX-1’s subsystems and external environment.  These resources and 
states include the flash memory buffer, communications link, available battery power, 
solar array power, a sun sensor, ground station in-view periods, climate modes, and 
transmitter modes.  Activities are either commands to satellite subsystems or 
exogenous events affecting the satellite’s states or resources, such as entering/exiting 
the view of a ground station or entering/exiting direct sunlight. 

The model also has mission and operations constraints, which can impact activities 
(temporal constraints), resources, or states.  Temporal constraints include requirements 
that a series of critical housekeeping operations must be performed at the transitions 
between light and dark.  Resource constraints include requirements that the flash 
memory buffer cannot exceed its capacities and that the battery power cannot go below 
half of its maximum capacity. State constraints include requirements that uplinks and 
downlinks only occur when the Colorado station in in -view and that the transmitter is 
in transmit mode.  Also, school downlinks (which do not move any memory off of the 
flash memory buffer) can only occur when the schools are in-view and the transmitter 
is in broadcast mode, engineering activities must take place when the sun is not 
directly visible, and data takes must occur while the sun is in-view. 

CX-1 problems involve obtaining and downlinking the maximum amount of 
atmospheric data while staying inside power and memory resource guidelines.  The in-
view duration for the Colorado ground station varies depending on the orbit of the 
satellite and outages in the ground station.  Removing data from the flash memory 
buffer before it fills requires downlinking as much as possible during each visibility 
window, and this requires dynamic rescheduling as viewing periods change.  Also, 

    
Fig. 2. The CX-1 Spacecraft, undergoing integration and test, and an artist’s 
depiction of the  CX-1 Spacecraft deployed and in flight 



 

changes in power consumption by certain activities affects the power profile and can 
drain excessive power from the satellite.  Here dynamic rescheduling facilitates 
discarding activities to stay within power guidelines. 

There are three different CX-1 models with increasing complexity.  In CX1-RES, 
activities have constant durations and have constant resource and state needs.  This 
model represents a straightforward space mission operation domain for planning and 
scheduling with constrained states and resources.  The CX1-PARM model adds a 
number of parameter dependencies.  For some activities, power usage is a function on 
activity duration and lighting state, and takes as much power as possible from the solar 
power source before relying on battery power.  Battery usage is a function of current 
levels of battery charge and the duration of the activity.  Downlinking bandwidth is a 
function of the modes of the satellite.  Finally, the CX1-OPT model further increases 
the complexity by including optimality criteria.   These criteria are based on the total 
amount of data downlinked to the ground stations (preferring more data), the largest 
amount of data contained in the memory buffer at any one time (with a preference for 
less), the amount of data acquired while in non-tropical climates (preferring more), the 
number of mode switches in the transmitter, and the smallest charge on the available 
power (preferring a higher minimum charge). 

With these models the CX-1 problem generators create six different files containing 
activity instantiations for a user specified number of orbits.  Some of these activities 
are changers for exogenous events and they cannot be deleted, removed, or modified 
in the schedule.  Others are requests for downlinking, engineering events, and 
datatakes, and can be modified, added to, or removed in the final schedule.  
• Initialization Activities: In the start state, there is a random amount of power in the 

battery and a random amount of data currently stored in the flash memory. 
• Engineering Data Requests: Engineering scans are requested approximately every 

280 seconds while the spacecraft is in both in -view of the sun and in darkness. 
• Datatake Requests: These requests occur approximately every 170 seconds when 

the spacecraft is in-view of the sun.   
• Sun In-View Periods: These periods are generated randomly based on an estimate 

of a CX-1 proposed orbit and a somewhat random start position.  The spacecraft 
always begins the simulator in darkness.  The climate (tropical or non-tropical) 
transitions are generated relative to the sun in-view periods. 

• Power Activities: Solar power activities add a random amount of power to the 
available power resource, and occur approximately every 300 seconds while the 
spacecraft is in-view of the sun. 

• Downlink Station In-View Periods:  Downlink windows to both the Colorado ground 
station and participating schools are generated randomly based on viewing 
windows for an estimated orbit and sun in-view periods.  Each window’s duration is 
based on both satellite position and the strength of the receiving station. 

 
4.2 CX-1 Simulation 
We can describe the mission operations of the CX-1 model, as described above, in 
terms of the stochastic element of the planning simulation in order to illustrate how the 
simulation can differ from predicted (or nominal) operations.  For instance, many 
activities have actual power usages that are normally distributed with a small variance 
around their predicted power usages. 
• Engineering Scans: Engineering scans fail randomly 7% of the time.   
• Datatakes : Datatakes will fail randomly 9% of the time.   



 

• Solar Power Functions: The actual amount of solar power is normally distributed 
around the model’s predicted solar power with a small variance. 

• Light/Dark Cycle: The sunlight/darkness cycle may be shifted based on a cyclic 
model of satellite drift.  The shift also impacts entering and exiting tropical zones. 

• Downlinking: Satellite drift impacts all downlink opportunity windows.  The start 
time may be moved (i.e., delayed lock up) and the duration may be shortened (i.e., 
signal cut off) based on a cyclic model of satellite drift. 

• Bandwidth: The bandwidth to downlink both spacecraft data and science data is a 
uniformly distributed number, owing to possible downlink problems. 

These stochastic parameters can remain ungrounded until run-time where they 
impact the planner’s effectiveness.  Many runs can be performed on the simulator to 
estimate the expected performance of the planner.  For testing purposes, we also 
include a “happy simulator” which runs nominal operations with zero variance. 

The CX-1 simulator receives parameterized activities from the planner and simulates 
operations for the entire duration of the plan.  Throughout the the plan’s execution, the 
simulator calculates the score based on the following criteria: 
• Number of violated operational conflicts (e.g., dual usage of atomic resources, 

overflowing the memory buffer, or downlinks to nonexistent ground stations) 
• Total amount of data downlinked to the Colorado ground station 
• Flash memory usage (preferring a lower mean usage and smaller variance) 
• Available power (preferring a higher mean and smaller variance) 
• Total amount of data downlinked to the school ground stations 
• Total amount of data acquired while in a non-tropical zone 
• Total number of transmitter mode switches  

5 Accessing the Problem Set Information 
The problem set information is downloadable from the University of Colorado Space 
Grant Web Site (www-sgc.colorado.edu).  While the release sets are preliminary and are 
still undergoing slight revisions (and testing), they are very close to the final sets.  
This site will also be the focal point for future updates and releases.  While the 
domains are being made available to the public, specific terms are listed on the web site 
– including acknowledgement of the source in the event of any usage of the material, 
prohibitions on commercial use, etc. 

6 Discusion: Future Work, Related Work, Conclusions 
We hope that these domains will be the first in a series of space mission operations 
domains released for use by the automated planning and scheduling community.  As 
we have less mature collaboration efforts with three other University Nanosatellite 
projects, we hope that eventually we will be able to release similar problem sets relating 
to these.  An important aspect of this work in volves determining standards for 
releasing domains – i.e. a formalization of the domain, problem generator, and simulator 
specifications.  Developing a sufficiently expressive domain representation standard 
would facilitate use of the problem sets by other research groups.   

While there has been a historical disconnect between the research and applications 
oriented planning communities, a number of planning-oriented domains and testbeds 
have been made available.  These testbeds have originated in the research community 
by experimenters as they either improve an existing planner’s performance or define 



 

algorithms that plan with ever more expressive action representations.  For instance, 
the classical PRODIGY and UCPOP planners had multiple test domains included in their 
releases.  The sensory GRAPHplan package [Graphplan] has accompanying domains 
as well.  Our testbeds differ from this work due to our underlying focus on real world 
problems instead of planner test cases. 

On the planner comparison side, many planner optimization papers report planner 
performance on a number of benchmark problems, and the most realistic of these is a 
logistics problem to move packages around an artificial map.  Additionally, the AIPS 98 
[McDermott 2000] and 2000 [Bacchus] planning competitions had problems defined in 
a standard modeling language called PDDL, and test domains with problem generators 
and plan simulators were used.   Our domains are different than these previously 
released testbeds in that they are derived from actual space mission operations 
problems and address integrated planning and scheduling with metric time, resources, 
functional dependencies, and optimization (although a number of AIPS 2000 domains 
had some of these elements). 

The part -machining domain [Gil 1991] and the elevator control domain [Koehler & 
Schuster 2000] were motivated by real problems.  The part machining was an attempt to 
extract domain knowledge about how to turn a mass of metal into a machined part and 
encode it into a PRODIGY domain.  Similarly, the elevator control domain involved 
taking a set of services and constraints and encoding them in PDDL to be solved by 
planners such as those participating in the AIPS competitions.  One of the results from 
these efforts involved determining where the established modeling language cannot 
represent a desired feature of the real world problem.  For instance, the elevator control 
problem has a capacity constraint that PDDL could not represent.  Our work differs 
from this research in two places.  We do not avoid time and other metric constraints, 
and we altered our simulators to facilitate experimenting with interleaved planning and 
execution. 

A number of additional pure scheduling benchmarks exist [Fox & Ringer] as well as 
makespan benchmarks.  These are designed to be more manufacturing and enhanced 
job-shop scheduling problems. In contrast, our work emphasizes the integrated 
planning and scheduling inherent in space mission operations. 

Other research on interleaved planning and execution has resulted in  shared 
testbeds like tileworld, truckworld, and the phoenix testbeds [Hanks et al. 1993].  These 
worlds were generated as benchmark cases for agent design within a multi-agent 
context.  While tileworld and truckworld were relatively simplistic testbeds fo r testing 
agent systems, the phoenix testbed focused on a forest firefighting domain.  Each of 
these testbeds offered defining problems with varying complexity, but only the phoenix 
testbed had an underlying operations scenario like our testbeds.  The Robocup rescue 
project [Kitano et al 2001] also focuses on providing testbeds with an underlying 
operations scenario.  It targets distribution of a complex multi-agent simulation 
environment.  This environment has the potential to provide an extremely rich planning 
and scheduling testbed. 

This paper introduced two benchmark problem sets based on actual space mission 
operations.  Each benchmark problem set includes problem generators, declarative 
specification of the problem(s), and one or more simulations.  The first mission is the 
DATA-CHASER, which demonstrated the ability of automated mission planning to 
both reduce commanding effort and improve science return [Chien et al. 1999].  The 
second mission is the Citizen Explorer Mission (CX-1), which is currently being 
rescheduled for launch.  We include three problem classes of increasing complexity 
(and realism): planning and scheduling with states and resources (PSSR), PSSR with 
functional dependencies, and PSSR with functional dependencies and plan quality.  



 

The domain descriptions, problem generators, and simulators are available for 
download from a web site at the University of Colorado, which designed and built 
these spacecraft and missions (and operated DATA-CHASER).  It is our hope that 
release of this information will help to focus the planning and scheduling research 
community on key issues in planning and scheduling including: domain model 
expressiveness, representing functional dependencies, and plan optimization. 
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